Example 4: Working Capital Management.
Determine how to invest excess cash in 1-month, 3-month and 6-month CDs so as to
maximize interest income while meeting company cash requirements (plus safety margin).

	Yield	Term	Purchase CDs in months:		
1-mo CDs:	1.0\%	1	1, 2, 3, 4, 5 and 6		Interest
3-mo CDs:	4.0\%	3	1 and 4		Earned:
6-mo CDs:	9.0\%	6	1	Total	\$7,700

Month:	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	End
Init Cash:	$\$ 400,000$	$\$ 205,000$	$\$ 216,000$	$\$ 237,000$	$\$ 158,400$	$\$ 109,400$	$\$ 125,400$
Matur CDs:		100,000	100,000	110,000	100,000	100,000	120,000
Interest:		1,000	1,000	1,400	1,000	1,000	2,300
1-mo CDs:	100,000	100,000	100,000	100,000	100,000	100,000	
3-mo CDs:	10,000			10,000			
6-mo CDs:	10,000						
Cash Uses:	75,000	$(10,000)$	$(20,000)$	80,000	50,000	$(15,000)$	60,000
End Cash:	$\$ 205,000$	$\$ 216,000$	$\$ 237,000$	$\$ 158,400$	$\$ 109,400$	$\$ 125,400$	$\$ 187,700$

Color Coding

If you're a financial officer or a manager, one of your tasks is to manage cash and short-term investments in a way that maximizes interest income, while keeping funds available to meet expenditures. You must trade off the higher interest rates available from longer-term investments against the flexibility provided by keeping funds in short-term investments.

This model calculates ending cash based on initial cash (from the previous month), inflows from maturing certificates of deposit (CDs), outflows for new CDs, and cash needed for company operations for each month.

You have a total of nine decisions to make: the amounts to invest in one-month CDs in months 1 through 6; the amounts to invest in three-month CDs in months 1 and 4; and the amount to invest in six-month CDs in month 1.

Problem Specifications

Target cell	H 8	Goal is to maximize interest earned.
Changing cells	$\mathrm{B} 14: \mathrm{G} 14$	Dollars invested in each type of CD.
Constraints	$\mathrm{B} 15, \mathrm{E} 15, \mathrm{~B} 16$	
	$\mathrm{~B} 15: \mathrm{B} 14>=0$	Investment in each type of CD must be greater than
	$\mathrm{E} 15>=0$	or equal to 0.

The optimal solution determined by Solver earns a total interest income of $\$ 16,531$ by investing as much as possible in six-month and three-month CDs, and then turns to one-month CDs. This solution satisfies all of the constraints.

Suppose, however, that you want to guarantee that you have enough cash in month 5 for an equipment payment. Add a constraint that the average maturity of the investments hold in month 1 should not be more than four months. \qquad
The formula in cell B20 computes a total of the amounts invested in month 1 (B14, B15, and B16), weighted by the maturities (1,3 , and 6 months), and then it subtracts from this amount the total investment, weighted by

SolverAssignment.xlsx

4. If this quantity is zero or less, the average maturity will not exceed four months. To add this constraint, restore the original values and then click Solver on the Tools menu. Click Add. Type b20 in the Cell Reference box, type 0 in the Constraint box, and then click OK. To solve the problem, click Solve.
To satisfy the four-month maturity constraint, Solver shifts funds from six-month CDs to three-month CDs. The shifted funds now mature in month 4 and, according to the present plan, are reinvested in new throe-month CDs. If you need the funds, however, you can keep the cash instead of reinvesting. The $\$ 56,896$ turning over in month 4 is more than sufficient for the equipment payment in month 5 . You've traded about $\$ 460$ in interest income to gain this flexibility.
